

DCU-003-1161002 Seat No. _____

M. Sc. (Sem. I) (CBCS) Examination

August - 2022

Mathematics: Paper - CMT-1002

(Real Analysis)

Faculty Code: 003

Subject Code: 1161002

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) Answer any five questions.

- (2) Each questions carries 14 marks.
- (3) There are 10 questions in total.
- 1 Answer the following seven questions:

14

- (1) Define : σ -algebra of a non-empty set X.
- (2) Let R be an algebra of sets on non empty set X. Let $A\Delta B=(A-B)\cup(B-A)$. Then for $A,\ B\in R$ show that, $A\Delta B\in R$.
- (3) Let $X \neq \phi$ and R be σ -algebra on X. Let $A_1, A_2,...,A_n,... \in R$. Then prove that $\bigcap_{i=1}^{\infty} A_i \in R$.
- (4) Define : $F_{\sigma}-$ sets. Justify that, an open interval is a $F_{\sigma}-$ set.
- (5) Using outer measure, prove that [1, 2) is not a countable subset of \mathbb{R} .
- (6) Let $A, B \subseteq \mathbb{R}$ and m*B = 0. Then prove that, $m*(A \cup B) = m*A$.
- (7) Define: Measurable function. Also given an example of a measurable function on \mathbb{R} .

2 Answer the following seven questions:

- 14
- (1) Let $A, B \subseteq \mathbb{R}$ and $A \subseteq B$. Then prove that, $m * A \le m * B$.
- (2) Write down $m^*(\mathbb{N} \times \mathbb{N})$ and $m^*([1, 3] \cap \mathbb{Q})$.
- (3) Define: Lebesgue measurable set.
- (4) Define: Characteristic function and Simple function.
- (5) Write down all three Littlewood's principles without proof.
- (6) Is Cantor set a measurable set? Justify your answer.
- (7) Define: Almost everywhere property.
- **3** Answer the following two questions:

14

- (1) Let $X \neq \phi$ and $R \subseteq P(X)$. Suppose R satisfies the condition that if $A \in R$. Then prove that, the following statements are equivalent:
 - (i) R is an algebra of sets on X.
 - (ii) $A_1, A_2, ..., A_n \in R$ then $\bigcup_{i=1}^n A_i \in R$.
 - (iii) $A_1, A_2, ..., A_n \in R$ then $\bigcap_{i=1}^n A_i \in R$.
 - (iv) $A, B \in R$ then $A \cap B \in R$
- (2) Let $X \neq \phi$ and C be a collection of subsets of X. Let $\beta = \{R/R \text{ is a boolean algebra on } X \text{ and } C \subseteq R\}$ and $H = \bigcap_{R \in \beta} R$. Then prove that, H is the smallest Boolean algebra on X, which contains C.
- 4 Answer the following two questions:

14

- (1) Let β_1 be the σ -algebra on \mathbb{R} , generated by the collection of all closed sets in \mathbb{R} and β_2 be the σ -algebra on \mathbb{R} , generated by the collection of all open sets in \mathbb{R} . Then prove that, $\beta_1 = \beta_2 = B_0$, the Borel field on \mathbb{R} .
- (2) Let $\langle A_n \rangle \subseteq P(\mathbb{R})$. Then prove that, $m^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} m^* A_n$.

5 Answer the following two questions:

- **14**
- (1) Prove that, m is a σ -algebra on \mathbb{R} , where m is the family of all measurable sets on \mathbb{R} .
- (2) Let $[a, b] \subseteq \mathbb{R}$. Then prove that, m*([a, b]) = b a.
- **6** Answer the following two questions:

14

- (1) State and prove, Monotone Convergence Theorem.
- (2) (a) Let D be a measurable subset of \mathbb{R} and $E \subseteq D$. Let X_E is the characteristic function of D. Then prove that, X_E is a measurable function if and only if E is a measurable subset of \mathbb{R} .
 - (b) Let $f, g: E \to \mathbb{R}$ be two real valued functions on a measurable set E. Let f be a measurable function on E and f = g a.e. on E. Then prove that, g is also a measurable function on E.
- 7 Answer the following two questions:

14

- (1) Let f, g be the non-negative Lebesgue integrable functions on a measurable set E. Let c > 0. Then prove that,
 - (i) $\int_{E} (cf) = c \int_{E} f$

(ii)
$$\int_{E} (f+g) = \int_{E} f + \int_{E} g.$$

- (2) State and prove, Fatou's Lemma.
- 8 Answer the following two questions:

14

(1) Let $f:[0, 2] \to R$ be defined by f(0) = 0 and $f(x) = x \sin\left(\frac{\pi}{x}\right)$ for $x \neq 0$. Then show that, f is not a

function of bounded variation on [0, 2].

(2) State and prove, Minkowski's Inequality.

- 9 Answer the following one question: 14

 Construct a non measurable subset of [0,1] with required justification.
- 10 Answer the following one question : 14 Let f, g be bounded measurable functions on E and $mE < \infty$. Then prove that,

(i)
$$\int_{E} (af + bg) = a \int_{E} f + b \int_{E} g, \ \forall a, \ b \in \mathbb{R}$$

- (ii) $f \leq g$ a.e. on E then $\int_{E} f \leq \int_{E} g$
- (iii) f = g a.e. on E then $\int_{E} f = \int_{E} g$
- (iv) If $a \le f(x) \le b$, $\forall x \in E$, then $a \le \frac{1}{mE} \int_{E} f \le b$
- (v) For any disjoint subset A and B of E, $\int_{A \cup B} f = \int_A f + \int_B f$.